

Fifth Semester B.E. Degree Examination, December 2012 Fundamentals of CMOS VLSI

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain the nMOS fabrication process with neat diagram.
 - b. Obtain the dc transfer characteristics of a CMOS inverter and mark all the region showing the status of PMOS and NMOS. (10 Marks)
- 2 a. Compare CMOS and bipolar technologies.

(04 Marks)

(10 Marks)

- b. Draw the circuit schematic and stick diagram of CMOS 2 input NAND gate.
- (06 Marks) (10 Marks)

c. Draw the layout for the schematic shown in the Fig.Q.2(c).

- a. Explain the operation of CMOS dynamic logic. Also discuss the cascading problem of dynamic CMOS logic. (10 Marks)
 - b. Realize $Z = \overline{A(B+C) + DE}$ for clocked CMOS logic.

(05 Marks)

c. Find the equation for the node voltages V_1 , V_2 , V_3 during logic "1" transfer, when each pass transistor is driving another pass transistor, as shown in Fig.Q.3(c). Assume threshold voltage of each transistor is V_{tn} . (05 Marks)

1 of 2

4	a.	rind the scaling factors for:	
		i) Channel Resistance Ron	
		ii) Current density J.	(06 Marks)
	b.	Derive the equation for rise time and fall time for CMOS inverter.	(08 Marks)
	c.	Write a note on limitations of scaling.	(06 Marks)
		PART – B	
5	a.	Explain structured design of bus arbitration logic for n-line bus.	(10 Marks)
	b.	Explain dynamic 4-bit shift register using CMOS logic.	(10 Marks)
6	a.	Design 4-bit ALU to implement addition, subtraction, EXOR, EXNOR, OR	and AND
		operations.	(10 Marks)
	b.	With the neat diagram, explain Braun array multiplier.	(10 Marks)
7	a.	Explain the working of three-transistor dynamic RAM cell.	(06 Marks)
	b.	Explain one transistor dynamic memory cell with schematic and stick diagram.	(06 Marks)
	c.	Discuss CMOS pseudo-static memory cell with stick diagram.	(08 Marks)
8	a.	Explain sensitized path-based testing for combinational logic.	(10 Marks)
	b	Write a note on ground rules for successful design	(10 Marks)

* * * * *